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Relevance to NASA's Mission
● “Petabytes to Megabytes”

– Dealing with Petabytes is a tough problem
– Distillation ... not the final product

● Exaflops for modelling ...
– How many bytes per second to deal with Exaflops?

● More and more and MORE data!
– Even if we filter it down, there is a LOT to work with
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My Work is About ...
● High Performance Computing

– Computing when speed is really the issue
– How to deliver Petaflops and Exaflops

● Parallel Computing
– It is really the only way to get the speed we need
– It fundamentally changes everything about how 

programs run
● Parallel I/O

– If you can't keep it fed, it doesn't matter how fast it is
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Parallel File Systems
● Two tasks:

– Distribute data among nodes in a parallel computer
● Leverage parallel I/O subsystems for performance

– Provide access mechanisms for parallel applications
● Simplifies complex access procedures

● PVFS – Parallel Virtual File System
– Designed for Beowulf class parallel computers
– Focuses on high-throughput access to large data sets
– Underdevelopment since 1993 at GSFC
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Goals and Outline
● Goals of this talk:

– Briefly cover the design of PVFSv2
● Goals of PVFSv2
● Major subsystems

– Motivate innovative features
● Networking and storage abstractions
● Requests and distributions

– Introduce research directions
● Redundancy
● Semantics
● Synchronization and atomicity
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Goals of PVFSv2
● Production quality design and implementation
● Extendable with modules
● Fully distributed - data and metadata
● Support for MPI-IO
● Support for data redundancy and fail-over
● Support for experimentation and research in 

parallel file systems
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PVFSv2 System Architecture
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BMI
● Network interface abstraction

– Abstract node addressing
– Supports multiple network fabrics simultaneously
– Non-blocking semantics

● post: submit a send or receive
● test: check if a send or receive is done
● wait: wait for a send or receive to be done

– Ports to new network fabrics with module
– Support for zero-copy protocols 
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Trove
● Storage interface abstraction

– Manages storage objects referenced by a handle
– Non-blocking interface
– Data space (storage object) has:

● bytestream space -- used for file data
● key/value pair space -- used for file metadata
● attribute space -- used for object metadata (stat info)

– Data spaces are clustered  to allow migration of 
storage objects between servers

– Support for synchronizing access to storage objects



Walt Ligon,  Clemson University11

Job Layer
● Manages asynchrony and scheduling for I/O 

transfers
– Non-blocking interface
– Combines operations for BMI, Trove, and Flows

● Allows testing and waiting on all subsystems
● May utilize threads for better performance

– Performance dependency analysis on server requests 
and enforces ordering

– Supports higher order scheduling between transfers
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Flows
● Provide a direct transfer of 

data between: 
– BMI and Trove
– BMI and memory

● Allows transfers to bypass job 
and request layers for 
efficiency

● Implements request and 
distribution processing
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Request Processor
● Main control loop of the PVFSv2 server
● Designed to process multiple requests 

concurrently
● Implemented using a state machine that encodes 

the steps of each request
● State machine language implemented to simplify 

state machine coding
– Allows new requests to be easily added
– encourages code reuse
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System Interface
● Client-side top-level system code
● Implements caching of inodes and directories
● Exposes features of the file system for use in 

higher level interfaces
● Intended as a VFS-level interface, not a user 

interface
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I/O Requests
● Based on MPI Datatype

– Uses same constructor functions
– Easily integrates with existing MPI Datatypes
– Allows arbitrary non-contiguous regions to be read 

from a file
– Provides a compact description of large regular access 

patterns
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Data Distribution
● Programmable 

distributions are loaded 
from modules
– Arbitrary mapping of data 

to servers
– Data can be distributed to 

match algorithmic access 
patterns

– Distribution can be fine 
tuned to maximize 
performance

Simple Striping

Nested Striping
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Redundancy
● Redundancy is often at odds with performance

– RAID 5 is considered the standard for redundancy
– RAID 5 creates a bottleneck that requires ALL file 

data to pass through one point in the system to 
compute parity

– RAID 5 is not generally the best performing 
configuration - mirroring (RAID 0+1) is usually 
better

– Both RAID 5 and RAID 0+1 require synchronization 
between data servers for consistency 
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Redundancy in PVFSv2
● PVFSv2 will support redundancy

– Selectable type of redundancy on a file-by-file basis
– Redundancy implemented in modules - allows 

different redundancy schemes to be implemented
– Fault-tolerant features in the system interface

● tolerates server failure
● reports server status
● allows restart of requests
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New Redundancy Types
● Configure when redundancy is maintained

– Lazy Redundancy
● Redundancy created when file closed
● Protects against loss during storage

– Commit Redundancy
● Redundancy created at specific points in program execution
● Useful for long running programs that update by section

– Update Redundancy
● Redundancy updated  when data updated
● Most complex, and most secure
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Semantics
● Portability concerns

– Posix
– MPI-IO

● Caching
● Locking
● Concurrent access
● Security
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PVFSv2 Semantics
● Guiding principles

– Semantics often conflict with performance goals
– No single set of semantics is right for every situation

● High-performance choices
● Implementations of alternative choices supported

– caching
– redundancy
– locking

● Expect more choices in the future
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Synchronization and Atomicity
● Needed by

– Redundancy schemes
– Some semantics
– Some applications

● Mostly implemented with region-based locks
– Work well in hardware but not scalable in software
– Mostly used to achieve atomicity
– Lots of state on clients
– Lots of I/O, poor scalability
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Conditional Operators
● Taken from modern SMP hardware designs

– Load Locked
– Store conditional

● Allows local operations to proceed
● Conditional store operations check for atomicity 

violation
● Could this be applied to a parallel file system?
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Benchmarking
● Need standardized benchmarks for parallel I/O

– measurement procedure
– reporting format
– terminology

● Test a range of workloads
– small/large transactions
– contiguous/non-contiguous
– metadata operations

● Both synthetic and application benchmarks
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I/O Benchmark Consortium
● Open group working to establish an effective set 

of benchmarks for parallel I/O
● Have national lab and university involvement
● Need industry involvement
● Need input from applications groups

http://www.mcs.anl.gov/~rross/pio-benchmark/index.html
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Conclusions
● PVFSv2 development nearing a release

– Targeting Supercomputing 2003 Exposition
● Important research issues

– Locking, redundancy, scalability
– Interfaces, semantics

● We need a joint effort to reach goals
– Open, flexible, common platform
– Good benchmarks

http://www.parl.clemson.edu/pvfs/


